Reliable Integrated Photonic Light Sources Using Curved Al2O3:Er3+ Distributed Feedback Lasers
نویسندگان
چکیده
منابع مشابه
Reliable Silicon Photonic Light Source Using Curved Distributed Feedback Lasers
We propose a curved erbium doped aluminum oxide (Al2O3:Er) distributed feedback (DFB) laser for a reliable integrated photonics light source. The curved structure allows a compensation for radially varying film thickness in Al2O3:Er deposition process. OCIS codes: (130.0130) Integrated optics; (130.3120) Integrated optics devices; (140.3460) Lasers; (130.2790) Guided waves.
متن کاملHeterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon
Silicon integration of mid-infrared (MIR) photonic devices promises to enable low-cost, compact sensing and detection capabilities that are compatible with existing silicon photonic and silicon electronic technologies. Heterogeneous integration by bonding III-V wafers to silicon waveguides has been employed previously to build integrated diode lasers for wavelengths from 1310 to 2010 nm. Recent...
متن کاملHeterogeneously integrated III-V/silicon distributed feedback lasers.
Heterogeneously integrated III-V-on-silicon second-order distributed feedback lasers utilizing an ultra-thin DVS-BCB die-to-wafer bonding process are reported. A novel DFB laser design exploiting high confinement in the active waveguide is demonstrated. A 14 mW single-facet output power coupled to a silicon waveguide, 50 dB side-mode suppression ratio and continuous wave operation up to 60°C ar...
متن کاملLight sources inside photonic crystals
We have measured the optical fluorescence spectra of dye incorporated in high-quality photonic crystals made from colloids. The spectra reveal a stopgap that is due to Bragg reflection with strikingly reduced attenuation compared with plane-wave transmission. The modified attenuation is independent of the position of the sources in the sample and is brought about by diffuse scattering from defe...
متن کاملAll-Optical Clock Recovery Using Multi-Section Distributed-Feedback Lasers
Recovering the frequency of incoming data sequences in optical transmission lines is important for signal processing. It has been suggested to use all-optical devices, for instance lasers diodes, for this purpose. Recently, self-pulsations have experimentally been discovered in multi-section distributed-feedback lasers. If a self-pulsating laser is exposed to an external data signal, it is expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2017
ISSN: 1943-0655
DOI: 10.1109/jphot.2017.2723947